“如果要使用600型光刻机,强行生产等效五纳米工艺的芯片,也不是不可以,在理论上是存在这种可能性的,但是我们的这款600型光刻机在套刻精度上还不够,强行生产的话,那么良率将会非常低,完全不具备商业价值!”
徐申学听罢后,却是没有露出什么沮丧之类的表情,而是继续翻看着技术,然后道:“七纳米工艺能够解决的话,就不错了。”
“至于五纳米工艺的话,良率低,商用价值低先不谈,关键的是要解决有无问题,我们必须确保哪怕没有EUV光刻机,也要能够获得一定的五纳米工艺产能,哪怕它成本极其高昂!”
徐申学对这个等效五纳米工艺,还是比较看重的……在没有EUV光刻机的当下里,想要进一步突破工艺制程,那么就需要深挖DUV浸润式光刻机的极限了。
不仅仅是自己这边的问题,对面的英特尔和台积电,四星等也存在同样的问题……因为他们也没EUV光刻机可用!
原时空里他们可以直接用EUV光刻机玩七纳米甚至五纳米,但是这个时空里……徐申学微笑着对他们说:我没得用,你们也不能用!
你们不能抢跑,这不是体面人该做的事!
你们要是不体面,我就帮你们体面!
至于说什么规矩不规矩,事关几千亿美金的电子消费以及半导体市场,背后是一整个电子消费以及半导体产业链,影响数以千万计的就业岗位……
规矩?
老子的火箭弹就是规矩!
现在老老实实的待在原地和我一起玩DUV浸润式光刻机……然后我们各自琢磨如何用DUV浸润式光刻机生产七纳米甚至五纳米工艺的芯片!
这也挺好玩的不是!
这个时候,如何利用DUV浸润式光刻机进一步推进工艺,这就成为了很重要的问题。
实际上在28纳米开始,各半导体厂商就已经开始着手这个问题并进行解决了,使用双重曝光,使用3D晶体管等技术。
这些都是为了在现有DUV浸润式光刻机134纳米光源波长的极限下,进一步缩小晶体管尺寸,提升晶体管密度。
智云微电子也不例外,早早就开始搞多重曝光技术以及3D晶体管技术。
如今正在试产的十四纳米工艺,就是采用了双重曝光加上3D晶体管技术。
不过双重曝光也搞不了等效七纳米工艺啊,怎么办?
智云微电子那边提出来了更加复杂的多重曝光工艺,简单上来说,就是他们想要来个力大飞砖,直接上马四重曝光技术,强行实现等效7七纳米的量产。
本章未完,请点击下一页继续阅读! 第2页/共9页